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What is the promise of H,-based e-fuels for the energy transition?
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What is the promise of H,-based e-fuels for the energy transition?
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What is the promise of H,-based e-fuels for the energy transition?
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What is the promise of H,-based e-fuels for the energy transition?

1. Broadly replacing fossil fuels without an end-use transformation.
“Greening” fossil fuel infrastructures and combustion technologies.

2. Spatial matching of renewable energy supply and demand: global e-fuel trade

3. Temporal matching of electricity supply and demand: seasonal energy storage
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What are the shortcomings of H,-based e-fuels?

1. Inefficient use of primary energy

2. Shaky climate benefits
3. Very high CO, abatement costs

4. Uncertain scale up and availability
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H,-based e-fuels — overall energy efficiency (production to use)
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Ueckerdt, F., et al. (2021) Potential and risks of hydrogen-based e-fuels in climate change mitigation
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H,-based e-fuels — Climate impacts
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Sacchi, R., et al. (2022) When, where and how can the electrification of passenger cars reduce greenhouse gas emissions?

Long-distance aviation

PAUL SCHERRER INSTITUT

World Germany  Austria lceland
0.64 — Reg. kerosene
' — E-kerosene (with DAC)
- - E-kerosene (with fossil CCU)
0.5
0.4+
0.3+
0.2+
0.19  Electricity N
mixes 2018
0 WorldI Gerlmany Al‘ustria | Iceland
/\QQ bb‘g b‘q’Q ‘b(bg \%Q ({9 Q

Carbon intensity of electricity mix (gCO,e kWh™)

[ I I I I
0 20 40 60 80 1
Renewable electricity generation share (%)

Ueckerdt, F., et al. (2021) Potential and risks of hydrogen-based e-fuels in climate change mitigation

00

-13-



PAUL SCHERRER INSTITUT

H.,-based e-fuels — high CO, abatement costs

High e-fuel costs, high CO, prices required. Competitiveness of e-fuels only ~2040
Future innovation possible in case of massive scaling. Massive subsidies required until then.
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Recent increase in oil and gas prices will help closing the cost gap and might reduce policy support required.

Ueckerdt, F., et al. (2021) Potential and risks of hydrogen-based e-fuels in climate change mitigation
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E-fuels: uncertain scale-up and availability
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Ueckerdt et al. (2021) - Ariadne Kurzdossier, Eckpunkte einer anpassungsfahigen Wasserstoffstrategie.

Odenweller, A., et al., in preparation. Probabilistic feasibility space of scaling up green hydrogen supply. -15-
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E-fuels: uncertain scale-up and availability
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Odenweller et al. (2022) Probabilistic feasibility space of scaling up green hydrogen supply. Nature energy, https://doi.org/10.1038/s41560-022-01097-4 -16-
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E-fuels vs. direct electrification: merit order of e-fuel demand
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Ueckerdt, F., et al. (2021) Potential and risks of hydrogen-based e-fuels in climate change mitigation
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Summary and take home messages

* E-fuels (as well as hydrogen) can (and hopefully will) be meaningful contributions
towards net-zero GHG emissions

* BUT ONLY, if electricity with close to zero GHG emissions is available

* Due to e-fuel (and low-carbon H,) scarcity, comparatively inefficient use of resources
and thus also high costs and resource consumption, direct electrification should be
preferred whenever possible

* Primary use cases for e-fuels: aviation and long-distance shipping, industry

* Primary use cases for (green) hydrogen:
industry — feedstock and energy carrier; long-distance heavy-duty freight transport
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